SOAL TURUNAN MATEMATIKA DAN PEMBAHASAN . Soal dan Pembahasan Fungsi Turunan ini diambil dari berbagai sumber, mulai dari soal un matematika, soal sbmptn matematika, soal uas matematika yang sengaja disajikan dalam bentuk file pdf, sehingga adik-adik bisa dapat lebih mudah mempelajarinya. Semoga soal ini bermanfaat bagi anda.
-
Diketahui f(x) = . Nilai f‘(4) = …
A. 1/3
B. 3/7
C. 3/5
D. 1
E. 4
f(x) =
f'(x) =
misal : u(x) = 2x + 4 u'(x) = 2
v(x) = 1 + v'(x) = 1/2 x-1/2
f'(x) =
f'(4) =
=
=
=
= =
-
Luas sebuah kotak tanpa tutup yang alasnya persegi adalah 432 cm2. Agar volume kotak tersebut mencapai maksimum, maka panjang rusuk persegi adalah … cm.
A. 6
B. 8
C. 10
D. 12
E. 16
misal kita anggap tinggi kotak adalah t dan panjang sisi alas adalah s.
Luas kotak tanpa tutup = Luas alas (persegi) + (4 x luas sisi)
432 = s2 + (4.s.t)
432 = s2 + 4ts
Karena yang diminta dalam soal adalah panjang sisi persegi, maka kita buat persamaan dalam variable s.
432 – s2 = 4ts
108/s – s/4 = t
Volume = v(x) = s2t
= s2(108/s – s/4)
= 108s – s3/4
Agar volume kotak maksimum maka :
v'(x) = 0
108 – 3s2/4 = 0
108 = 3s2/4
144 = s2
12 = s
- Grafik fungsi f(x) = x3 + ax2 + bx + c hanya turun pada interval –1 < x < 5. Nilai a + b = …
A. – 21
B. – 9
C. 9
D. 21
E. 24
f'(x) < 0
3x2 + 2ax + b < 0
Karena turun pada interval –1 < x < 5, itu artinya HP dari f'(x) adalah x1 = -1 atau x2 = 5. Jadi
f'(x) = (x + 1)(x – 5)
= x2 – 4x – 5
3x2 + 2ax + b = 3(x2 – 4x – 5)
3x2 + 2ax + b = 3x2 – 12x – 15
2a = -12 a = -6
b = -15
a + b = -6 + (-15) = -21
4. Untuk Mendapatkan Soal Selanjutnya Silahkan Klik Link Download di Bawah ini !
No comments:
Post a Comment